Analitical Solutions for Dynamical Axysimmetrical Problems of Expansion (Compression) of Thick-Walled Spherical and Cylindrical Shells Made of Incompressible Viscoplastic Material Immersed in Incompressible Viscous Liquid

Alexey Kiselev
Mechanics and Mathematics Faculty of Moscow Lomonosov State University
akis2006@yandex.ru

Abstract

Not many exact solutions of dynamic thermodelastoviscoplasticity and viscous liquid are known, in view of their complexity. Exact solutions of one-dimensional expansion (compression) of thick-walled spherical and cylindrical shells are obtained. We are going to consider shells made from incompressible viscoplastic material Sokolovsky-Perzyna type and immersed in an incompressible viscous liquid Navier-Stokes type. Shells loading of external and internal dynamic pressure. Solutions are obtained under the conditions that internal and external pressure exceed some minimal magnitudes. These magnitudes to obtain in the present paper. Tasks solved in Lagrange variables, that make possible obtained present exact solutions. These exact solutions are used for testing numerical calculation programmes and to estimate the effectiveness of numerical methods similar earlier obtained (see [1-4] and the bibliography given there).

References